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Abstract
There is strong interest in developing predictive models to better understand in-
dividual heterogeneity and disease progression in Alzheimer's disease (AD). We 
have built upon previous longitudinal AD progression models, using a nonlinear, 
mixed-effect modeling approach to predict Clinical Dementia Rating Scale – Sum 
of Boxes (CDR-SB) progression. Data from the Alzheimer's Disease Neuroimaging 
Initiative (observational study) and placebo arms from four interventional trials 
(N = 1093) were used for model building. The placebo arms from two additional 
interventional trials (N = 805) were used for external model validation. In this 
modeling framework, CDR-SB progression over the disease trajectory timescale 
was obtained for each participant by estimating disease onset time (DOT). Disease 
progression following DOT was described by both global progression rate (RATE) 
and individual progression rate (α). Baseline Mini-Mental State Examination and 
CDR-SB scores described the interindividual variabilities in DOT and α well. This 
model successfully predicted outcomes in the external validation datasets, sup-
porting its suitability for prospective prediction and use in design of future trials. 
By predicting individual participants' disease progression trajectories using base-
line characteristics and comparing these against the observed responses to new 
agents, the model can help assess treatment effects and support decision making 
for future trials.
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INTRODUCTION

Alzheimer's disease (AD) is a neurodegenerative disor-
der and the most common cause of dementia worldwide, 
with an estimated prevalence of greater than 150 million 
by 2050.1,2 AD causes progressive cognitive and func-
tional impairment, which lead to significant disability 
and healthcare burdens.2 However, there is considerable 
interindividual variability (IIV) in the rate of disease pro-
gression.2 Disease-modifying therapies for AD are being 
investigated, but the failure rate of AD trials is high.3 The 
anti–amyloid-beta (Aβ) antibody aducanumab recently 
received accelerated approval for the treatment of AD 
from the US Food and Drug Administration (FDA) based 
on reductions in Aβ positron emission tomography sig-
nals, which have been hypothesized to be related to re-
ductions in the rates of clinical decline in cognition and 
function.4,5 Other available, approved treatments for AD 
target disease symptoms and do not alter disease progres-
sion; however, several other anti-amyloid monoclonal an-
tibodies are also under investigation.2

Given the complex and heterogeneous nature of AD, 
there is strong interest in predictive disease models to 
better understand the disease trajectory.6 Research and 
clinical diagnostic criteria have been developed by sev-
eral organizations which state that people living with AD 

progress along a continuum, from preclinical, without 
any overt symptoms, to prodromal AD (also described as 
mild cognitive impairment [MCI] due to AD). This can 
then develop into mild, moderate, and severe forms of AD 
dementia, with the spectrum of these changes stretching 
over a period of 15–25 years.7 Disease models are increas-
ingly important in the context of model-informed drug 
development, which has been encouraged by global reg-
ulatory agencies (e.g., the FDA Prescription Drug User 
Fee Act VI,8 the European Medicines Agency 2025 strat-
egy,9 and the International Council for Harmonization of 
Technical Requirements for Pharmaceuticals for Human 
Use10), as they have the potential to impact drug develop-
ment and clinical trial design by enabling robust assess-
ment of treatment effects.

Several groups have developed disease progression 
models in AD using a nonlinear, mixed-effect modeling 
approach and the Alzheimer's Disease Neuroimaging 
Initiative (ADNI) database.11–17 Previous disease progres-
sion modeling work in AD is summarized in Table S1. The 
majority of these models have focused on describing the 
longitudinal trajectory of cognitive scores as measured 
by the Alzheimer's Disease Assessment Scale – Cognitive 
Subscale (ADAS-Cog),11,13,15 with a few studies focusing 
on the Clinical Dementia Rating Scale – Sum of Boxes 
(CDR-SB).14,16 Although the ADAS-Cog assesses cognitive 

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Disease progression models in Alzheimer's Disease (AD) have previously been 
developed for the Alzheimer's Disease Assessment Scale-Cognitive Subscale and 
Clinical Dementia Rating Scale – Sum of Boxes (CDR-SB) score.
WHAT QUESTION DID THIS STUDY ADDRESS?
This study assessed the longitudinal progression of CDR-SB score for prodromal-
to-moderate AD using a disease progression model developed with placebo 
arm data from multiple interventional clinical trials and Alzheimer's Disease 
Neuroimaging Initiative (ADNI).
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
The model adequately predicted longitudinal progression of CDR-SB score, 
informed by the baseline Mini-Mental State Examination score and baseline 
CDR-SB score. We finalized a robust model using data from interventional stud-
ies and ADNI.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The disease progression model could be used to predict longitudinal progression, 
and as a virtual control arm in an open-label extension study. Prospective predic-
tion of progression could also support the design of future clinical trials and be 
used to assess treatment effects for ongoing trials via cohort- or individual-level 
analysis.



      |  1031MODELING AD PROGRESSION TO PREDICT CDR-SB SCORE

impairment, the CDR-SB evaluates both cognitive and 
functional impairment and has been proposed as a pri-
mary outcome for use in prodromal-to-mild AD trials.16 
In these models, subpopulations that differ in progres-
sion rates (e.g., progressors/nonprogressors14 or slow/fast 
progressors)16 can be defined as parameters that are esti-
mated in the mixture model. Additionally, covariate anal-
ysis can help identify main drivers of disease progression, 
such as baseline score values (e.g., CDR-SB, Mini-Mental 
State Examination [MMSE], and ADAS-Cog), apolipopro-
tein E ε4 allele (APOEε4) genotype, sex, fluid biomarkers, 
measures of brain volume (hippocampal and intracranial 
volumes), and education level.15,18–20

The base structure for disease models in AD has evolved 
over time. Earlier models assumed a linear score progres-
sion from baseline (start of the trial).11 Holford and Peace 
developed a population pharmacodynamics model of five 
clinical trials and characterized the response to treatment 
via an offset in disease progression curve.21,22 Yang et al.12 
proposed the concept of disease onset time (DOT) by ac-
counting for the fact that participants enrolled in a trial are 
at different stages of their disease, thus fitting the data to 
a theoretical curve of disease progression for ADAS-Cog 
13. The ADAS-Cog 13 includes all ADAS-Cog 11 items as 
well as a test of delayed word recall and a number cancel-
lation or maze task.23 ADAS-Cog 13 scores range from 0–
85.23 Ueckert et al. combined item response theory and a 
pharmacometrics approach to describe progression of total 
ADAS-Cog and item level scores.24 Rogers et al. used a beta 
regression model to describe the longitudinal progression 
of ADAS-Cog in people with AD in both natural history 
and randomized clinical trial settings.25 Quartino et al. 
used a similar approach to describe progression of six items 
of the CDR scale, ADAS-Cog 12 (ADAS-Cog 12 includes 
all ADAS-Cog 11 items and a delayed word recall task and 
scores range from 0 to 8023), and hippocampal and ventric-
ular volumes.26 Delor et al. implemented the DOT concept 
via a logistic function, to describe change in CDR-SB scores 
following DOT via a differential equation.16

These models discussed have improved our quantita-
tive understanding of the time course of the disease and 
important covariates affecting disease progression. Most 
models developed to date focus on describing progression 
of one score (e.g., CDR-SB or ADAS-Cog 11). Ultimately, 
developing joint models of such scores could be of inter-
est as proposed by Quartino et al.26 This study builds upon 
the previous works in disease modeling for AD to charac-
terize longitudinal progression of CDR-SB in the absence 
of active treatment (i.e., progression of participants in the 
placebo arm of clinical trials and progression of partici-
pants in the observational study, ADNI). Even though the 
model building in this study is focused on CDR-SB score, 
we leverage learnings from previous modeling work 

on ADAS-Cog (such as the concept of DOT). We began 
our model-building effort based on the CDR-SB disease 
model developed by Delor et al.,16 which was developed 
using the ADNI cohort. We used a similar base structural 
model to Delor et al.16 and conducted model building and 
covariate selection. The strength of our model-building 
effort is using data from the placebo arms of multiple 
interventional clinical trials in AD (SCarlet RoAD [SR], 
Marguerite RoAD [MR], ABBY, and BLAZE, as described 
in Table  1) and data from the ADNI.27–30 Additionally, 
we used placebo data from the CREAD31 and CREAD232 
trials to assess performance of the model on studies that 
were not used for model building. The model-building 
population included participants across the range of 
disease severity, from prodromal AD to moderate AD 
dementia.

METHODS

Data for model building and validation

Model-building dataset

The model-building datasets included participants 
across the following disease stages: prodromal AD, 
mild AD, and moderate AD. Data were extracted 
from the placebo arms of clinical trials of crenezumab 
(ABBY [NCT01343966, n = 144, phase II, mild-to-
moderate AD] and BLAZE [NCT01397578, n = 29, 
phase II, mild-to-moderate AD])27,33 and gantenerumab 
(SR [NCT01224106, n = 266, phase III, prodromal AD] 
and MR [NCT02051608, n = 195, phase III, mild AD]30; 
Table 1). Participant data from the ADNI database (adni.
loni.usc.edu) were also used for model building.34 The 
ADNI study was launched in 2003 as a public–private 
partnership, led by Principal Investigator Michael W. 
Weiner. The primary goal of the ADNI has been to 
test whether biomarkers and clinical and neuropsy-
chological assessments can be combined to measure 
the progression of MCI and AD. For up-to-date infor-
mation, see www.adni-info.org. For ADNI data (data 
extracted on February 2, 2020), only participants who 
were amyloid-positive with a baseline diagnosis of late 
MCI or AD were included in the analysis (N = 459); in 
order to mirror inclusion criteria for the most recent 
AD clinical trials (e.g., SR, MR, BLAZE, CREAD, and 
CREAD2). Demographics and characteristics for par-
ticipants included in the analysis are summarized in 
Table 2. Populations were similar in age and sex ratios. 
In SR, about 13% of participants were APOEε4-positive; 
in the other studies, this percentage ranged from 67% 
to 79%. Participants did not receive any concomitant 

http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://www.adni-info.org
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medications in the SR study, but the use of symptomatic 
therapies (i.e., rivastigmine, donepezil, galantamine, 
and memantine) was permitted in the other studies. 
The MR, ABBY, and BLAZE studies, which enrolled 
only participants with mild or mild-to-moderate AD, 
had slightly higher baseline CDR-SB scores than other 
study populations. SR enrolled participants with pro-
dromal AD, which resulted in lower baseline CDR-SB 
scores.

Participants with only one CDR-SB score value or 
a missing baseline CDR-SB score were excluded from 
the analysis. The lengths of the treatment duration in 
interventional trials were generally up to 2 years, and 
data up to 4 years were included from the ADNI. For 
the covariate analysis, missing data were imputed to the 
population median from the study and the correspond-
ing diagnosis group. For baseline scores, we had fewer 
than 5% missing. We did not have missing categorical 
covariates.

External validation dataset

Data from the placebo arms of the crenezumab clinical 
trials (CREAD [NCT02670083, phase III] and CREAD2 
[NCT03114657, phase III]; pooled N = 805) were used for 

external model validation. The CREAD studies included 
participants with prodromal-to-mild AD.

Definition of CDR-SB score

The CDR-SB is a common clinical end point in interven-
tional trials that assesses both cognitive and functional 
ability.35 The score is bound between zero and 18 and in-
creases as the disease advances.

Base structural model

The AD progression model for CDR-SB was developed 
using a nonlinear, mixed-effect modeling approach. The 
modeling was performed in the logit domain, resulting in 
the estimate of a score that was bound between zero and 
one; this was multiplied by 18, to ensure that the number 
stays within the bounds of the CDR-SB score (zero and 
18). To obtain the CDR-SB score, an estimated term (base-
line correction [BLC]; Table  3) repositioned the logit at 
the most probable level (i.e., 1–4.11 = −3.11; Equation 1).

(1)

CDR−SB= (exp (A (1)−BLC)∕(1+exp (A (1)−BLC)))×18

T A B L E  2   Participant demographics.

Real-world 
data Gantenerumab Crenezumab

ADNI
SCarlet 
RoAD

Marguerite 
RoAD ABBY BLAZE CREAD CREAD2

n = 459 n = 266 n = 195 n = 144 n = 29 n = 407 n = 398

Age, mean (SD), years 73.8 (7.6) 69.5 (7.5) 69.9 (8.6) 70.1 (7.2) 69.2 (7.8) 70 (8.4) 70.7 (7.9)

Sex, female, n (%) 195 (42) 149 (56) 113 (58) 76 (53) 14 (48) 247 (61) 224 (56)

APOEε4 carrier, % positive 72 13 67 67 79 71 67

Treatment with symptomatic therapies, n (%)

Rivastigmine (Y) 27 (6) 0 34 (17) 19 (13) 2 (7) 54 (13) 54 (14)

Donepezil (Y) 254 (55) 0 98 (50) 82 (57) 19 (66) 209 (33) 179 (45)

Galantamine (Y) 428 (93) 0 17 (9) 18 (13) 2 (7) 25 (4) 17 (4)

Memantine (Y) 145 (31) 0 40 (21) 41 (29) 13 (45) 20 (5) 82 (20)

Diagnosis, n (%)

Prodromal AD 244 (53) 266 (100) 0 0 0 265 (65) 226 (57)

Mild or moderate AD dementia 215 (47) 0 195 (100) 144 (100) 29 (100) 142 (35) 172 (43)

CDR-SB, mean (SD) 3 (1.9) 2.1 (1.0) 4 (1.8) 4.6 (2.2) 4.9 (1.8) 3.8 (1.6) 3.8 (1.6)

MMSE, mean (SD) 25.2 (2.7) 25.7 (2.1) 22.4 (2.9) 21.8 (3.3) 21 (3.3) 23.4 (2.9) 23.5 (2.9)

ADAS-Cog 11, mean (SD) 15.9 (7) 14.1 (5.6) 18.9 (6) 19.5 (7.3) 22.6 (9.5) 20 (5.9) 20.1 (5.5)

Abbreviations: AD, Alzheimer's disease; ADAS-Cog 11, Alzheimer's Disease Assessment Scale – Cognitive Subscale 11; ADNI, Alzheimer's Disease 
Neuroimaging Initiative; APOEε4, apolipoprotein E ε4 allele; CDR-SB, Clinical Dementia Rating Scale – Sum of Boxes; MMSE, Mini-Mental State Examination; 
SD, standard deviation.
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An equation (Equation  2) describing the rate of pro-
gression of A (1) was fitted to the model-building dataset 
and parameters of the equation describing progression 
were estimated.

Change in A (1) over time was described via a differ-
ential equation, similar to Delor et al. (Equation  2).16,36 
To account for the fact that different participants enter a 
trial at different stages of disease, a DOT was estimated 
prior to the start of the trial for each participant by fitting 
Equation 2 to the model-building data; this DOT concept 
is illustrated in Figure 1. To ensure that DOT had a posi-
tive value, an arbitrary time shift (20 years) was imposed 
on the data such that the start of the trial was at year 20; 
DOT was then estimated to be between 0 and 20 years. A 
virtual dose was administered in NONMEM version 7.3 
at time 0 with AMT = 1. The sigmoidal term, 

(

T30

DOT30+T30

)

, 
ensured that the score only started increasing after DOT 
and did not change evidently between time 0 and DOT 
(exponent 30 is arbitrary and very high, to model the onset 
of the disease). In addition to DOT, the change in CDR-SB 
score was further described by a global disease progression 
rate, linear with time (RATE), and a first order rate con-
stant (α), describing exponential progression. IIV was im-
plemented on DOT and α. It was not possible to estimate 
IIV on all three parameters (when IIV was implemented 
on RATE it was estimated to be close to the boundary of 
zero [0.00003]). Similar to Delor et al.,16 an additive resid-
ual error model was implemented.

Covariate analysis

Covariate analysis was conducted to identify factors that 
help explain IIV. Age, body mass index, education level 
(years), sex, APOEε4 status, disease diagnosis (AD vs. 
prodromal), baseline cognition (MMSE and ADAS-Cog), 
baseline cognition/function (CDR-SB), baseline func-
tional score (Functional Activities Questionnaire [FAQ] 
or Alzheimer's Disease Cooperative Study – Activities 
of Daily Living Scale), and baseline Clinical Dementia 
Rating – Global Score (CDR-GS) were selected based on 
understanding of the disease and graphical analysis of 
correlation between covariates and score, as well as pa-
rameters of IIV (ETAs) and covariates. Covariates were 
retained in the model based on statistical significance 
(Table S2 shows the drop in objective function after addi-
tion of each covariate). In addition to a drop in the objec-
tive function value, plots of ETAs versus covariates were 
examined after addition of covariates, to ensure that the 
effect was fully captured. The functional forms of the sig-
nificant covariates are presented in Table S2.

Model evaluation and validation

In the first step, parameter estimates and goodness-
of-fit plots were carefully examined on the population 
and individual levels, such as plot of observation (DV) 
versus population prediction (PRED), DV versus in-
dividual prediction (IPRED), individual weighted re-
siduals (IWRES) versus TIME, IWRES versus IPRED, 
conditional weighted residuals (CWRES) versus TIME, 

(2)dA

dT
= (RATE + ((A − 1) × �)) ×

(

T30

DOT30 + T30

)

T A B L E  3   Population parameter estimates.

Estimate
Relative standard 
error, % 95% CI Shrinkage, %

Objective function value 5923.514 – –

DOT, years 16.7 (i.e., 3.3 before the 
start of the trial/study)

1.5 [16.3; 17.3] –

RATE, per year 0.305 5.4 [0.274; 0.345] –

α (range) 0.0624 11.9 [0.049; 0.079] –

Baseline correction 4.11 1.9 [3.91; 4.25] –

Covariate baseline MMSE on DOT 0.246 15.5 [0.169; 0.316] –

Covariate baseline CDR-SB on DOT −0.076 10.1 [−0.094; −0.060] –

Covariate baseline CDR-SB on RATE 0.261 15.6 [0.181; 0.351] –

Covariate baseline MMSE on α 1.9 30.2 [0.576; 2.735] –

IIV for DOT 0.0016 13.57 [0.001; 0.002] 35

IIV for α 0.718 15.70 [0.56; 1.00] 32

Additive error 0.126 4 [0.119; 0.136] 11

Abbreviations: CDR-SB, Clinical Dementia Rating Scale – Sum of Boxes; DOT, disease onset time; IIV, interindividual variability; MMSE, Mini-Mental State 
Examination; RATE, population disease-progression rate; α, individual progression rates.
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CWRES versus PRED, and ETA distributions. Diagnostic 
plots of observed versus predicted changes from base-
line were also examined, and the objective function 
value together with parameter uncertainty (posterior 
predictive check [PPC]) were used as a guide through-
out model development. Internal validation via visual 
predictive checks (VPCs) was used to confirm that the 
model captured the central tendency and variability 
observed in the model-building data for each study. 
In producing VPCs, 1000 simulated replications of the 
dataset were created by random sampling of parameter-
level random error (i.e., IIV) and observation-level ran-
dom error (residual error or unexplained differences 
between predicted and observed values). Simulations 
to obtain VPCs were conducted in NONMEM version 
7.3 and plotted in R version 3.6.1.37 External validation 
using VPCs was then performed with data from the pla-
cebo arms of the CREAD trials. In addition to VPCs, the 
PPC including parameter uncertainty was conducted to 
compare model-predicted and observed mean changes 

from baseline for each study. For this analysis, similar 
to VPCs, 1000 replications of the dataset were simulated 
across various sources of variability, and predicted mean 
changes from baseline, and confidence intervals for the 
mean changes from baseline, were calculated at each 
timepoint and compared with observed changes. Thus, 
the model was developed using a dataset with partici-
pants ranging in disease severity from prodromal AD to 
moderate AD, and internal validation was conducted to 
confirm that the model can predict all different disease 
stages used for model building.

RESULTS

Model development

We were able to capture progression of CDR-SB scores 
for the entire population using Equation  2, by includ-
ing baseline CDR-SB as a covariate on DOT and RATE 

F I G U R E  1   The concept of DOT 
(i.e., the time at which the score starts 
increasing before the start of the trial) (a) 
and observed longitudinal trajectories of 
CDR-SB scores for 100 randomly selected 
participants from the model-building 
dataset on the clinical trial time scale 
(b1), on the disease trajectory time scale 
(using DOT) (b2), and corresponding 
individual predictions from the model for 
those participants (b3). CDR-SB, Clinical 
Dementia Rating Scale – Sum of Boxes; 
DOT, disease onset time.
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(structural covariates). Including the baseline MMSE 
score as a covariate on DOT and α was significant in 
further explaining between-subject variability (Table 4). 
The final model thus included baseline CDR-SB as a 
covariate on RATE, baseline MMSE as a covariate on 
α, and baseline CDR-SB and baseline MMSE as covari-
ates on DOT. Baseline CDR-SB was included as a struc-
tural covariate on DOT (Equation  3). Overall, model 
diagnostic plots did not show signs of systemic bias with 
respect to study, diagnostic group, time, or PRED mag-
nitude (Figure S1 shows plots of DV vs. PRED and DV 
vs. IPRED; plot of observed and predicted changes from 
baseline at 12 months is shown in Figure S2). All param-
eters were well-estimated (Table 3). DOT was estimated 
as 3.3 years before entering the trial, or start of study 
for the ADNI data (with a relative standard error [RSE] 
of 1.5%). The estimated IIV of α was large (84.7% [RSE 
9.3%]). Despite the large range of DOT (up to 6.94 years 
before the start of the study in model-building studies), 
the covariates largely explained the variability in DOT 
very well, and IIV was estimated at 4% (RSE 6.4%) (cor-
relation plots of IIV on DOT and α are presented in 
Figure S3). Shrinkage of IIV on DOT and α were 35% and 
32%, respectively. Fewer than 1% of participants had es-
timated DOTs after the start of the study (DOT <0); this 
occurred in participants whose score did not progress or 
decreased over time. Larger values of α were associated 
with fast progressors (DOTs close to the start of the trial/
study, but scores progressed rapidly). Population RATE 
was estimated at 0.305 (RSE 4.6%) per year. The direc-
tion of the estimated covariate effects on DOT was in line 
with our expectation based on the directionality of these 
scores. For example, MMSE score decreases whereas 
CDR-SB increases with advanced disease, and the cor-
responding covariate parameters are estimated as posi-
tive and negative values, respectively, which capture the 
nature of these scores (Figure S3A–C).
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Model validation

Cohort level

Internal validation by VPC confirmed that the model per-
formed adequately in capturing the observed data from 

the trials used for model building (Figure 2). The devia-
tion observed in SR after 1 year could be attributed to the 
fact that there was a very high proportion of participants 
with minimal/no progression. For this study, the model 
also over predicted the 90th percentile. Similarly, external 
validation via VPC confirmed that the model performed 

F I G U R E  2   VPC internal validation 
of the model in studies used for model 
development (a–e) and external validation 
of the model in studies not used for model 
development (f, g). *ADNI, Alzheimer's 
Disease Neuroimaging Initiative; CDR-SB, 
Clinical Dementia Rating Scale – Sum of 
Boxes; CI, confidence interval; VPC, visual 
predictive check. Solid and dashed black 
lines are the observed median and 10th 
and 90th percentiles, respectively. Three 
predicted percentiles are shown in color 
for each of the observed metrics (solid 
line is median, shaded areas are 10th, and 
90th percentiles). *Obtained from 1000 
simulated datasets using the final model.
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adequately in capturing the observed data from the 
CREAD and CREAD2 trials. Overlap between the confi-
dence intervals from the simulations and observed data 
for median, 10th percentile, and 90th percentile of the 
data demonstrates that the model adequately captures 
central tendency and variability in the trials used for 
model building (Figure  2a–e). The external validation, 
which included early AD, was also well-predicted by this 
model (Figure 2f,g).

Individual level

In addition to using simulations to obtain model predic-
tions for an external dataset, the model can be used in 
estimation mode to obtain individual-level parameter esti-
mates to perform such prediction (post hoc Bayesian fore-
casting [MaxEval = 0]). In this setting, the R2 for observed 
versus predicted changes from baseline for post-baseline 
timepoints was 0.16.

Comparison of parameters describing 
disease progression across studies, disease 
stage, and APOEε4 status

Mean DOT was less than 3 years before the start of the 
study for the prodromal-to-mild AD population (summary 
statistics based on individual empirical Bayes estimates 
[EBEs] of DOT; Table 4), while the mild-to-moderate AD 
population had a mean DOT greater than 4 years prior 
to the start of the study. Global disease progression rate 
(RATE) varied between 0.29 and 0.35 across studies, with 
higher values in the mild-to-moderate AD population (it 
should be noted that variability in RATE is due to fixed ef-
fects [covariates]). In addition to study and disease stage, 
we also looked at summary statistics based on individual 
EBEs for DOT, and α based on APOEε4 status. Mean val-
ues for DOT, RATE, and α parameters were similar in 
APOEε4-positive and APOEε4-negative groups (Table S3).

Prediction of clinical end point (CDR-SB 
mean change from baseline)

The final model can be used to simulate the clinical end 
point: here, mean change from baseline in CDR-SB at 
each timepoint. We compared model-predicted versus ob-
served mean changes from baseline in CDR-SB scores for 
the placebo arms from model-building studies (Figure 3a–
e) and external validation studies (Figure 3f,g). Apart from 
the CREAD2 study, mean change from baseline predicted 
by the model at 12 months was higher than observed 

mean change from baseline at this timepoint. Observed 
mean change from baseline was within 95% predicted 
range for mean changes from baseline in CDR-SB scores 
(Table S3). For SR, the model predicted greater progres-
sion than what was observed in this study.

DISCUSSION

In this analysis, we built upon previous modeling by Delor 
et al.16 to develop a disease progression model to describe 
longitudinal, clinical progression in AD (as measured by 
the CDR-SB) using a nonlinear, mixed-effect population 
modeling approach. The model was developed using a 
rich dataset, with participants ranging in disease severity 
from prodromal AD to moderate AD; internal validation 
confirmed that the model can predict all different disease 
stages used in model building. External validation, which 
included early AD, was also well-predicted by this model. 
AD is a slowly progressive disease, and trials follow par-
ticipants over relatively short periods of time (roughly 
2 years); disease progression appears linear during trial 
duration (as seen in progression of scores such CDR-SB 
over time), whereas there is an exponential trajectory 
when looking at such scores over a longer period of time 
(e.g., onset of disease). To account for this, in this model, 
change in CDR-SB score over time was described via a dif-
ferential equation, similar to Delor et al.16 (Equation 2). 
We obtained the individual disease progression trajectory 
for each participant by estimating DOT prior to the start 
of the trial, thus enabling us to capture the nonlinear time 
course of the score. CDR-SB score is bounded between 
zero and 18. In our model-building dataset, fewer than 1% 
of participants had CDR-SB greater or equal to 10. Due 
to nature of the score, the participants who start at a very 
high CDR-SB score may show slower progression of score.

A previous model, developed by Delor et al.,16 used a mix-
ture model to identify fast and slow progressors in the ADNI. 
They identified baseline CDR-SB and ADAS-Cog as signifi-
cant covariates on DOT, baseline MMSE on α, and baseline 
CDR-SB, FAQ, and RHPNM (hippocampal volumes normal-
ized to that of a healthy subject with the same age and head 
size) as covariates on the modeled fraction of the population 
in the first (or second) subpopulation ($MIX). Our model 
uses the same base structural model as Delor et al.16 In addi-
tion to data from the ADNI, we used data from the SR, MR, 
ABBY, and BLAZE trials for model building. We identified 
baseline CDR-SB and baseline MMSE on DOT, baseline 
MMSE on α, and baseline CDR-SB on RATE as significant 
covariates in our model. CDR-SB assesses both cognition 
and function, whereas MMSE and ADAS-Cog both focus 
on cognitive assessments. Thus, in both our model and the 
model by Delor et al.,16 we identified baseline CDR-SB and 
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a cognitive score as significant covariates of DOT. Not all 
covariates used by Delor et al.16 were available (e.g., FAQ) 
or comparable (e.g., brain volume) for all studies we used in 
model building. A mixture model (mixture models allow for 
the estimation of two or more [sets of] parameters for differ-
ent subpopulations of subjects without a specific variable to 
assign subjects to relevant groups) was also assessed during 
our model development; however, in this study, we were able 

to finalize a model without a mixture model, using data from 
interventional studies and the ADNI, and, thus, with an 
easier application in simulation mode. Indeed, differences 
between subpopulations identified by Delor et al.16 could be 
characterized using baseline covariates.

Nevertheless, although the mixture model was not in-
cluded in the final model, our model parameter estimates 
were in agreement with the estimates published by Delor 

F I G U R E  3   Model-predicted and observed changes from baseline in CDR-SB for participants in studies used for model building (a–e) 
and not used in model building (f, g). ADNI, Alzheimer's Disease Neuroimaging Initiative; CDR-SB, Clinical Dementia Rating Scale – Sum 
of Boxes. Colored lines are mean and 95% prediction interval from the model. Black triangles and whiskers are mean and 95% confidence 
interval of the observed.
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et al.,16 where DOT was estimated 3.7 years prior to the 
start of the study for the ADNI. Our estimated rate of 
0.305 falls between the slow progression rate (0.271) and 
the fast progression rate (0.383), as estimated by the mix-
ture model by Delor et al.16

We identified significant covariates to explain between-
individual variability in DOTs and nonlinear progres-
sion rates. Shrinkage of IIV on DOT and α were 35% and 
32%, respectively. These shrinkages were higher than the 
25%–30% range. In general, higher ETA shrinkage im-
poses a risk in selecting covariate based on EBEs. In our 
model-building effort, we comprehensively examined the 
correlation between significant covariates and other pa-
rameters to ensure correct covariate selection. Baseline 
CDR-SB score was a significant covariate on DOT and 
RATE, and baseline MMSE score was a significant covari-
ate on DOT and α. Covariate estimates of DOT indicate 
earlier onset of the disease in trials with higher baseline 
CDR-SB scores (estimated baseline CDR-SB covariate on 
DOT = −0.076) and lower baseline MMSE scores (esti-
mated baseline MMSE covariate on DOT = 0.246). This is 
expected, as higher baseline CDR-SB and lower baseline 
MMSE correspond to more advanced disease and, thus, 
earlier DOT. Covariate estimate for α (estimated baseline 
MMSE covariate on α = 1.9) indicates higher α at higher 
baseline MMSE scores, but IIV on α is large. Higher α in 
Equation 1 corresponds to faster progression in CDR-SB 
score. Covariate estimate for RATE (estimated baseline 
CDR-SB covariate on RATE = 0.261) indicates higher 
RATE at higher baseline CDR-SB scores. Higher RATE in 
Equation 1 corresponds to faster progression in CDR-SB 
score. Even though we were not able to include brain vol-
umes (due to lack of consistency across studies) or bio-
markers (due to small sample size for participants with 
biomarker data) as covariates, these parameters seem to 
have impacts on disease progression and could be areas 
of further exploration. In our analysis of different subpop-
ulations, we found that prodromal-to-mild AD is associ-
ated with a DOT closer to the start of the trial, as well as a 
lower global progression rate compared with the mild-to-
moderate AD population. However, we did not find a dif-
ference in parameter estimates based on APOEε4 status. 
This is in agreement with Yang et al., where they found 
that calculating disease onset time in the model resulted 
in a model with fewer covariates compared to previous 
studies for ADAS-Cog.12

The model was successfully validated (via VPC and 
PPC) by assessing its ability to predict CDR-SB progres-
sion for the model-building dataset. The discrepancy in SR 
could be attributed to the high proportion of nonprogres-
sors in this study. Assessing model predictive performance 
on data from independent clinical trials not seen by the 
model is highly preferable38; to this end, the placebo arms 

of the two phase III CREAD trials were used for external 
validation. In addition to cohort-level analysis, the model 
can be used to make individual-level predictions. Such 
predictions could be used to prospectively predict progres-
sion of patients enrolled in an interventional study based 
on their score at the start of the trial. We tested the model 
performance for this individual level prediction, using only 
baseline score as the input. (Here, we used MaxEval = 0, 
taking observed baseline score as input and predicting for 
post-baseline timepoints using the model, EVID = 0 for 
baseline, EVID = 2 for post-baseline.) In this setting, R2 for 
model-predicted versus observed changes from baseline 
for post-baseline timepoints was 0.16 (using MaxEval = 0). 
It should be noted that diagnostic plot for predicted and 
observed change from baseline during model building was 
observed to be reasonable (Figure S2). To our knowledge, 
previous disease modeling efforts did not explore perfor-
mance and the application of such models on individual 
level predictions. Large between-participant variability in 
AD could be a contributor to low R2 using MaxEval = 0, 
as random effect plays a big role in capturing between-
participant variability. This is an active area of further ex-
ploration for us to identify adequate performance metrics 
for application of AD progression model for individual 
level predictions. The DV versus PRED plots did not show a 
major bias, a fact which supports this type of analysis could 
be used prospectively, to predict progression in participants 
enrolled in clinical trials and confirm placebo progression. 
In addition to application for the placebo arm, the model 
can be used to predict progression in the treatment arm as 
if enrollees had not received the treatment in the treatment 
arm.22,39 By comparing the predicted individual trajectories 
to the observed, on-treatment responses, the model can 
help assess a treatment effect of new molecules in develop-
ment.40 This assessment of treatment effect can be used to 
further confirm and support statistical analyses following 
study readout. The model can also be used for the design of 
future trials in AD, by selecting inclusion/exclusion criteria 
using clinical trial simulations.
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